Learning seminars on Harmonic Analysis related to PDEs
Goal
The goal of this learning seminar is to study harmonic analysis tools that are closely related to the theory of PDEs.
Time/Venue
We will meet Tuesday from 4 PM – 5:30 PM at 205 Kassar House.
Schedule
Date | Topic | Refs | Speakers |
---|---|---|---|
Sep/20 | Organizational meeting | ||
Sep/27 | Calderon-Zygmund decomposition and $L_p$-boundedness of singular integrals | 1,7,11 | Will |
Oct/04 | Application of Calderon-Zygmund decomposition, John-Nirenberg theorem | 1,12 | Will |
Oct/11 | Introduction to sparse operators(guest lecture) | Jose | |
Oct/18 | $A_p$-weights (Reverse Holder inequality, Singular integrals) | 5,12 | Tainara |
Oct/25 | $A_p$-weights (Rubio de Francia extrapolation) | 2,3 | Nathan |
Nov/1 | Littlewood-Paley square function theorem | 5,9 | Hanye |
Nov/8 | No seminar (Election day) | ||
Nov/15 | Commutator estimates (Coifman-Rosenberg-Weiss) | 6,8 | Nathan |
Nov/22 | Paraproducts and Coifman-Meyer theorem | 6,10 | Will |
Nov/29 | Strichartz estimates for Schrodinger equations | 12 | Haram |
Dec/6 | Strichartz estimates for wave equations | 12 | Bruno |
Notes
References
- L. A. Caffarelli and I. Peral, On $W^{1,p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1998), no.1, 1–21.
- H. Dong and D. Kim, On $L_p$-estimates for elliptic and parabolic equations with $A_p$ weights, Trans. Amer. Math. Soc. 370 (2018), no. 7, 5081–5130.
- J. Duoandikoetxea, Fourier analysis, GSM, vol 29, AMS, Providence, RI, 2001.
- M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, Vol. 105, Princeton University Press, Princeton, NJ, 1983.
- L. Grafakos, Classical Fourier analysis, 3rd Edition, GTM, vol. 249, Springer, New York, 2014.
- L. Grafakos, Modern Fourier analysis, 3rd Edition, GTM, vol. 249, Springer, New York, 2014.
- N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, GSM, vol. 96, AMS, Providence, RI, 2008.
- D. Li, On Kato-Ponce and fractional Leibniz, Rov. Math. Iberoam. 35 (2019), 23–100.
- C. Muscalu and W. Schlag, Classical and multilinear harmonic analysis, Vol. I, Cambridge University Press, Cambridge, 2013.
- C. Muscalu and W. Schlag, Classical and multilinear harmonic analysis, Vol. II, Cambridge University Press, Cambridge, 2013.
- E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30., Princeton University Press, Princeton, N.J., 1970.
- E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, andPrinceton Mathematical Series, vol.~43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.